The study of data science involves working with massive volumes of data and state-of-the-art instruments and techniques to find patterns in the data, obtain relevant information, and make business decisions. It is a difficult undertaking to analyze vast volumes of multidimensional road traffic data in order to find anomalies. When dealing with enormous volumes of traffic data in various formats, computational data science (CDS) should be employed. The objective of the CDS approach was to identify patterns in the traffic data that could impact traffic effectiveness. By using data science to detect data anomalies to a greater extent with contemporary artificial intelligence techniques like deep learning (DL), traffic congestion and vehicle lineups are lessened. The primary benefit of the CDS strategy is that it helps identify reasons for data anomalies early on, thereby preventing long-term traffic congestion. Additionally, CDS showed outcomes that were improving in a variety of road traffic circumstances.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Road Traffic Anomalies Detection Using Deep Learning Algorithm and Computational Data Science


    Weitere Titelangaben:

    Smart Innovation, Systems and Technologies


    Beteiligte:
    Verma, Abhishek (Herausgeber:in) / Zhang, Justin (Herausgeber:in) / Chandra Pandey, Avinash (Herausgeber:in) / Sehgal, Abhilasha (Autor:in) / Mani, N. K. (Autor:in)

    Kongress:

    International Conference on Business Intelligence and Data Analytics ; 2024 ; Bangalore, India April 05, 2024 - April 06, 2024



    Erscheinungsdatum :

    25.02.2025


    Format / Umfang :

    13 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Detection of road traffic anomalies based on computational data science

    Raiyn, Jamal | Springer Verlag | 2022

    Freier Zugriff


    A Computational Data Science Based Detection of Road Traffic Anomalies

    Murali Krishna, Chinta Venkata / Gopala Krishna, G / Vellela, Sai Srinivas et al. | IEEE | 2023


    Road traffic accident risk prediction deep learning algorithm

    YU ZHIQING / YAO HUI / LI KUN et al. | Europäisches Patentamt | 2022

    Freier Zugriff

    Bangladeshi Road Traffic Sign Detection and Navigation Using Deep Learning

    Komol, Tawhid Ahmed / Riti, Rinvi Jaman / Nath, Pulak Deb et al. | IEEE | 2025