This chapter explores reinforcement learning (RL) as a method for enabling robots to autonomously collect data and refine their skills through interaction with their environment. It covers key RL concepts, including Markov Decision Processes (MDP), model-free and model-based approaches, and techniques like RLHF and DPO for aligning models with human preferences. The chapter also discusses challenges such as data scarcity and reward design, highlighting future directions in sample efficiency, transfer learning, and sim-to-real adaptation for improving RL in robotics.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Reinforcement Learning and Control


    Beteiligte:

    Erschienen in:

    AI for Robotics ; Kapitel : 7 ; 311-352


    Erscheinungsdatum :

    03.05.2025


    Format / Umfang :

    42 pages




    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Reinforcement Learning for Control

    Yu, Wen / Perrusquía, Adolfo | Wiley | 2021


    TRAFFIC CONTROL WITH REINFORCEMENT LEARNING

    GANTI RAGHU KIRAN / SRIVASTA MUDHAKAR / RAO VENKATESH ASHOK RAO et al. | Europäisches Patentamt | 2020

    Freier Zugriff

    Traffic control with reinforcement learning

    GANTI RAGHU KIRAN / SRIVATSA MUDHAKAR / RAO VENKATESH ASHOK RAO et al. | Europäisches Patentamt | 2022

    Freier Zugriff

    REINFORCEMENT LEARNING BASED SATELLITE CONTROL

    DARABI AMIREBRAHIM / ZOU YU | Europäisches Patentamt | 2025

    Freier Zugriff

    Powerslide Control with Deep Reinforcement Learning

    Jaumann, Florian / Schuster, Tobias / Unterreiner, Michael et al. | Springer Verlag | 2024

    Freier Zugriff