We propose a novel learning strategy called Global-Local Motion Pattern Classification (GLMPC) to localize pedestrian-like motion patterns in videos. Instead of modeling such patterns as a single class that alone can lead to high intra-class variability, three meaningful partitions are considered - left, right and frontal motion. An AdaBoost classifier based on the most discriminative eigenflow weak classifiers is learnt for each of these subsets separately. Furthermore, a linear three-class SVM classifier is trained to estimate the global motion direction. To detect pedestrians in a given image sequence, the candidate optical flow sub-windows are tested by estimating the global motion direction followed by feeding to the matched AdaBoost classifier. The comparison with two baseline algorithms including the degenerate case of a single motion class shows an improvement of 37% in false positive rate.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Pedestrian Detection Using Global-Local Motion Patterns


    Beteiligte:
    Yagi, Yasushi (Herausgeber:in) / Kang, Sing Bing (Herausgeber:in) / Kweon, In So (Herausgeber:in) / Zha, Hongbin (Herausgeber:in) / Goel, Dhiraj (Autor:in) / Chen, Tsuhan (Autor:in)

    Kongress:

    Asian Conference on Computer Vision ; 2007 ; Tokyo, Japan November 18, 2007 - November 22, 2007


    Erschienen in:

    Computer Vision – ACCV 2007 ; Kapitel : 20 ; 220-229


    Erscheinungsdatum :

    01.01.2007


    Format / Umfang :

    10 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    740-014: Pedestrian Detection using HOGVA Feature and Local Pedestrian Classifier

    Kasai, H. / Onoguchi, K. / International Association of Science and Technology for Development | British Library Conference Proceedings | 2011



    Can appearance patterns improve pedestrian detection?

    Ohn-Bar, Eshed / Trivedi, Mohan M. | IEEE | 2015


    Can Appearance Patterns Improve Pedestrian Detection?

    Ohn-Bar, Eshed / Trivedi, Mohan M. | British Library Conference Proceedings | 2015


    Predictive Modeling of Pedestrian Motion Patterns with Bayesian Nonparametrics

    Chen, Yufan / Liu, Miao / Liu, Shih-Yuan et al. | AIAA | 2016