Methods from the representation theory of finite groups are used to construct efficient processing methods for the special geometries related to the finite subgroups of the rotation group. We motivate the use of these subgroups in computer vision, summarize the necessary facts from the representation theory and develop the basics of Fourier theory for these geometries. We illustrate its usage for data compression in applications where the processes are (on average) symmetrical with respect to these groups. We use the icosahedral group as an example since it is the largest finite subgroup of the 3D rotation group. Other subgroups with fewer group elements can be studied in exactly the same way.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Crystal Vision-Applications of Point Groups in Computer Vision


    Beteiligte:
    Yagi, Yasushi (Herausgeber:in) / Kang, Sing Bing (Herausgeber:in) / Kweon, In So (Herausgeber:in) / Zha, Hongbin (Herausgeber:in) / Lenz, Reiner (Autor:in)

    Kongress:

    Asian Conference on Computer Vision ; 2007 ; Tokyo, Japan November 18, 2007 - November 22, 2007


    Erschienen in:

    Computer Vision – ACCV 2007 ; Kapitel : 73 ; 744-753


    Erscheinungsdatum :

    01.01.2007


    Format / Umfang :

    10 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Emerging applications of computer vision

    AIPR Workshop | TIBKAT | 1997


    Computer vision applications - Special issue

    Smith, M. L. / Smith, L. N. | British Library Online Contents | 2007


    Security applications of computer vision

    Sage, K. / Young, S. | IEEE | 1999


    Multimedia Applications of Computer Vision

    Asmuth, J. / Dixon, D. / Hanna, K. et al. | British Library Conference Proceedings | 1998


    Detecting Point Merge patterns using computer vision

    Raphael, Christien / Favennec, Bruno / Hoffman, Eric G. et al. | AIAA | 2021