UAV swarm systems have been widely used in many fields. When performing formation flight missions in complex airspace environments, UAV swarms often encounter sudden obstacle threats. UAV swarms need to track predetermined trajectories while avoiding sudden obstacles. To address the three-dimensional path tracking control and obstacle avoidance problem of UAV swarms, a nonlinear model predictive control algorithm combined with adaptive artificial potential field method is proposed. A trajectory tracking and obstacle avoidance model for UAV swarms is established, and a cost function considering internal collisions of UAV swarms and external obstacles is designed. The algorithm achieves UAV swarm tracking of predetermined trajectories while maintaining formation and avoiding sudden obstacles. The feasibility and effectiveness of the algorithm are verified through simulation calculations.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Research on Trajectory Tracking and Obstacle Avoidance Methods for UAV Swarm Based on Model Predictive Control


    Weitere Titelangaben:

    Lect. Notes Electrical Eng.


    Beteiligte:
    Li, Haonan (Autor:in) / Huang, Junsong (Autor:in) / Wang, Leting (Autor:in) / Wang, Teng (Autor:in) / Zhang, Hairuo (Autor:in) / Li, Xiaoyang (Autor:in)

    Kongress:

    China Conference on Command and Control ; 2024 ; Beijing, China May 16, 2024 - May 18, 2024



    Erscheinungsdatum :

    27.12.2024


    Format / Umfang :

    12 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch







    Trajectory Generation Based on Model Predictive Control with Obstacle Avoidance between Prediction Time Steps

    Kon, K. / Fukushima, H. / Matsuno, F. | British Library Online Contents | 2009


    MODEL PREDICTIVE CONTROL-BASED, LOW-SPEED TRAJECTORY PLANNING WITH DYNAMIC OBSTACLE AVOIDANCE IN UNSTRUCTURED ENVIRONMENTS

    BORRELLO GIULIO / BASSO MICHELE / LORUSSO LUCA et al. | Europäisches Patentamt | 2024

    Freier Zugriff