Despite the impressive performance achieved by sign language recognition systems based on skeleton information, our research has uncovered their vulnerability to malicious attacks. In response to this challenge, we present an adversarial attack specifically designed to sign language recognition models that rely on extracted human skeleton data as features. Our attack aims to assess the robustness and sensitivity of these models, and we propose adversarial training techniques to enhance their resilience. Moreover, we conduct transfer experiments using the generated adversarial samples to demonstrate the transferability of these adversarial examples across different models. Additionally, by conducting experiments on the sensitivity of sign language recognition models, we identify the optimal experimental parameter settings for achieving the most effective attacks. This research significantly contributes to future investigations into the security of sign language recognition.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Adversarial Attacks on Skeleton-Based Sign Language Recognition


    Weitere Titelangaben:

    Lect.Notes Computer


    Beteiligte:
    Yang, Huayong (Herausgeber:in) / Liu, Honghai (Herausgeber:in) / Zou, Jun (Herausgeber:in) / Yin, Zhouping (Herausgeber:in) / Liu, Lianqing (Herausgeber:in) / Yang, Geng (Herausgeber:in) / Ouyang, Xiaoping (Herausgeber:in) / Wang, Zhiyong (Herausgeber:in) / Li, Yufeng (Autor:in) / Han, Meng (Autor:in)

    Kongress:

    International Conference on Intelligent Robotics and Applications ; 2023 ; Hangzhou, China July 05, 2023 - July 07, 2023



    Erscheinungsdatum :

    21.10.2023


    Format / Umfang :

    11 pages




    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Adversarial Attacks on Skeleton-Based Sign Language Recognition

    Li, Yufeng / Han, Meng / Yu, Jiahui et al. | TIBKAT | 2023


    Adversarial Attacks on Traffic Sign Recognition: A Survey

    Pavlitska, Svetlana / Lambing, Nico / Zollner, J. Marius | IEEE | 2023



    Australian sign language recognition

    Holden, E. J. / Lee, G. / Owens, R. | British Library Online Contents | 2005