Tethered satellite formation systems have attracted significant attention in recent years, primarily because they offer potential advantages for certain space missions, such as space interferometry measurement. This work considers the stable deployment of a spinning multi-mass tethered system arranged in a hub-spoke configuration in the orbital plane. The system contains a parent satellite (hub) modeled as a rigid body, and several sub-satellites connected to the hub via inelastic tethers (spokes). The deployment dynamics are derived using Lagrange’s equations. The spinning motion of the parent satellite is controlled by active torque, while tether deployment is conducted by release mechanisms on the parent satellite and low-thrust engines installed on each sub-satellite. Considering the physical restraints of tether tension during the deployment process, an optimal controller is proposed using Bellman dynamic programming, based on a simplified dynamic model. Then, the obtained controller is employed in the complete model, where the coupling effect between the spinning of parent body and tether deployment are taken into account. Finally, numerical simulations are presented to illustrate the effectiveness of the proposed control strategy.
Stable Deployment Control of a Multi-tethered Formation System Considering the Spinning Motion of Parent Satellite
Lect. Notes Electrical Eng.
Asia-Pacific International Symposium on Aerospace Technology ; 2021 ; Korea (Republic of) November 15, 2021 - November 17, 2021
The Proceedings of the 2021 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2021), Volume 2 ; Kapitel : 57 ; 771-782
30.09.2022
12 pages
Aufsatz/Kapitel (Buch)
Elektronische Ressource
Englisch
On Formation Deployment for Spinning Tethered Formation Flying and Experimental Demonstration
British Library Conference Proceedings | 2004
|Dynamics Of Spinning Multi-Tethered Satellite Form...
AIAA | 2005
|