Current navigation applications allow routes to be drawn between two different locations on a map, either within a town or among different cities. These applications offer routing services mainly for vehicles such as cars, motorcycles or public transport vehicles, but also for pedestrians. For vehicles, these applications increasingly take into account aspects such as fuel consumption or pollution. However, for pedestrians, most current applications only provide shortest distance routes, not considering other relevant aspects such as the profile of the users (age, physical condition, difficulties to walk-up stairs, wheelchair requirements, allergies, etc.) or the current traffic or weather conditions. In this line, this article presents PARApp, a mobile app that allows specifying the user’s profile and, based on it and on the contextual information available about the city, allows computing the fastest (shorter distance), flattest (less slope), safest (in terms of accident rate), less crowded or less polluted routes. PARApp also considers user-defined exclusion zones to be avoided when computing the former routes.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    PARApp Pedestrian-Aware Routing App


    Weitere Titelangaben:

    Lect.Notes Bioengineering


    Beteiligte:
    Moguel, Enrique (Herausgeber:in) / de Pinho, Lara Guedes (Herausgeber:in) / Fonseca, César (Herausgeber:in) / Lozano-Pinilla, José R. (Autor:in) / Vicente-Chicote, Cristina (Autor:in)

    Kongress:

    International Workshop on Gerontechnology ; 2022 ; Evora, Portugal November 17, 2022 - November 18, 2022


    Erschienen in:

    Gerontechnology V ; Kapitel : 6 ; 47-52


    Erscheinungsdatum :

    28.03.2023


    Format / Umfang :

    6 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Pedestrian-Aware Statistical Risk Assessment

    Shen, Xun / Raksincharoensak, Pongsathorn | IEEE | 2022


    Context-aware pedestrian detection using LIDAR

    Oliveira, L / Nunes, U | IEEE | 2010


    Illumination Distribution-Aware Thermal Pedestrian Detection

    Li, Songtao / Ye, Mao / Ji, Luping et al. | IEEE | 2024


    CONCEPT-AWARE ENSEMBLE SYSTEM FOR PEDESTRIAN DETECTION

    Lin, H. / Kim, K. / Choi, K. et al. | British Library Conference Proceedings | 2014


    MPC-based Pedestrian Routing for Congestion Balancing

    Menner, Marcel / Di Cairano, Stefano / Hamada, Masaki et al. | IEEE | 2023