The clustering activities of users give rise to dynamically changing ground hotspots in both space and time, posing significant challenges for providing communication services to dynamic hotspot areas. UAV swarms, with their ease of deployment and high maneuverability, offer promising solutions. However, UAVs acting as aerial base stations (BSs) are constrained by their limited computing resources and coverage range. Therefore, it is crucial to plan the flight trajectories of UAVs rationally to provide extensive coverage and maximize their resource utilization. We formulate the trajectory planning of multiple UAVs as a multi-objective optimization problem to maximize the ground user coverage, fairness, and UAV resource utilization. We propose a graph attention-enhanced deep reinforcement learning-based algorithm for the trajectory planning of multiple UAVs. The algorithm relies on a centralized training and distributed execution architecture for the flight control of multiple UAVs, enabling UAVs to fully explore the unknown area to learn the distribution of hotspot regions and perceive the optimal altitude to maximize coverage. Additionally, the algorithm incorporates a graph attention encoder to enhance UAV perception of the surrounding environment, addressing the issue of limited observation range. Extensive simulation results demonstrate that our proposed algorithm significantly outperforms baseline algorithms. The proposed algorithm achieves a user coverage rate of 95% and a coverage fairness index close to 1.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Graph Attention Enhanced Multi-UAV Trajectory Planning: A Multi-Agent Deep Reinforcement Learning Algorithm


    Weitere Titelangaben:

    Lect. Notes Electrical Eng.


    Beteiligte:
    Liu, Lianqing (Herausgeber:in) / Niu, Yifeng (Herausgeber:in) / Fu, Wenxing (Herausgeber:in) / Qu, Yi (Herausgeber:in) / Cao, Gaoxiang (Autor:in) / Yuan, Wenke (Autor:in) / He, Huasen (Autor:in) / Hou, Yunpeng (Autor:in) / Zhu, Rangang (Autor:in) / Luo, Deng (Autor:in)

    Kongress:

    International Conference on Autonomous Unmanned Systems ; 2024 ; Shenyang, China September 19, 2024 - September 21, 2024



    Erscheinungsdatum :

    28.03.2025


    Format / Umfang :

    11 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Multi-Agent Trajectory Prediction with Graph Attention Isomorphism Neural Network

    Liu, Yongkang / Qi, Xuewei / Sisbot, Emrah Akin et al. | IEEE | 2022


    Parking task allocation and trajectory planning system based on multi-agent reinforcement learning

    WANG MEILING / CHEN SIYUAN / SONG WENJIE et al. | Europäisches Patentamt | 2023

    Freier Zugriff


    Deep Reinforcement Learning for Image-Based Multi-Agent Coverage Path Planning

    Xu, Meng / She, Yechao / Jin, Yang et al. | IEEE | 2023