This paper addresses the long-standing challenge of traffic congestion in urban areas exacerbated by population growth and increased vehicular traffic. Accurate traffic flow prediction is crucial for the effective functioning of intelligent transportation systems (ITS) to control traffic and enhance safety. This study focused on exploring various hybrid deep learning models, including LSTM_ARIMA, LSTM_ XGB, and GRU_CNN. Among these, LSTM_ARIMA emerged as the most promising and consistently outperformed the other methods in terms of the prediction accuracy. Experiments conducted on real traffic data demonstrated a significant reduction in the root mean square error and an improvement in the R score when the LSTM_ARIMA model was utilized. The findings of this research contribute to the advancement of traffic prediction methods, with implications for urban planning, traffic optimization, and overall traffic safety enhancement.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Integrating Hybrid Deep Learning for Improving Traffic Flow Prediction


    Weitere Titelangaben:

    Lect. Notes in Networks, Syst.


    Beteiligte:
    Koubaa, Anis (Herausgeber:in) / Mnaouer, Adel Ben (Herausgeber:in) / Boulila, Wadii (Herausgeber:in) / Raghay, Said (Herausgeber:in) / Moumen, Idriss (Autor:in) / Rafalia, Najat (Autor:in) / Abouchabaka, Jaafar (Autor:in)

    Kongress:

    International Conference on Smart Systems and Emerging Technologies ; 2024 ; Marrakech, Morocco November 19, 2024 - November 21, 2024



    Erscheinungsdatum :

    14.08.2025


    Format / Umfang :

    10 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Traffic flow prediction method based on hybrid deep learning

    XIA DAWEN / CHEN YAN / LI HUAQING et al. | Europäisches Patentamt | 2023

    Freier Zugriff


    Non-Stationary Traffic Flow Prediction Using Deep Learning

    Koesdwiady, Arief / Bedawi, Safaa / Ou, Chaojie et al. | IEEE | 2018


    Deep Learning for Short-Term Traffic Flow Prediction

    Polson, Nicholas | Online Contents | 2016


    Motorway Traffic Flow Prediction using Advanced Deep Learning

    Mihaita, Adriana-Simona / Li, Haowen / He, Zongyang et al. | IEEE | 2019