Speed and positioning technology is a crucial foundation and key technology for the operation control and safety assurance of maglev trains. In this study, an improved bee algorithm (IABC) optimized Elman neural network-assisted INS/GNSS combination positioning method is proposed to address the issues of satellite signal loss and INS/GNSS error accumulation, which can affect the accuracy of the system. When the satellite signals are reliable, the system adopts the INS/GNSS combination speed and positioning mode. The IABC is used to optimize the weights of the Elman neural network, thereby improving its prediction accuracy. The optimized Elman neural network is trained accordingly. When satellite signals are lost, the trained neural network is utilized to predict the measurement input of the Kalman filter, providing error correction values for the output of the inertial navigation system to enhance speed and positioning accuracy. Simulation experiments have demonstrated that the IABC optimized Elman neural network-assisted combination navigation system significantly improves the speed and positioning accuracy when satellite signals are lost.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Research on Improving the Elman Neural Network for the INS/GNSS Integrated Velocity and Positioning Algorithm


    Weitere Titelangaben:

    Lect. Notes Electrical Eng.


    Beteiligte:
    Jia, Limin (Herausgeber:in) / Qin, Yong (Herausgeber:in) / Yang, Jianwei (Herausgeber:in) / Liu, Zhigang (Herausgeber:in) / Diao, Lijun (Herausgeber:in) / An, Min (Herausgeber:in) / Wu, Junteng (Autor:in) / Yang, Jie (Autor:in) / Meng, Chuanshu (Autor:in) / Jiang, Jusong (Autor:in)

    Kongress:

    International Conference on Electrical and Information Technologies for Rail Transportation ; 2023 ; Beijing, China October 19, 2023 - October 21, 2023



    Erscheinungsdatum :

    15.02.2024


    Format / Umfang :

    9 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Improving GNSS Positioning Using Neural-Network-Based Corrections

    Ashwin V. Kanhere / Shubh Gupta / Akshay Shetty et al. | DOAJ | 2022

    Freier Zugriff


    Improving TTFF by Two-Satellite GNSS Positioning

    Kirkko-Jaakkola, M. / Parviainen, J. / Collin, J. et al. | IEEE | 2012