Shinshu University has been developing a computer simulation-based navigation algorithm verification system. The system performs the final confirmation of a subject navigation algorithm by executing the flight test items specified in Table 2–9 of the RTCA DO-334 MOPS by computer simulation of an aircraft’s flight along a reference trajectory. Generating a high-precision reference trajectory requires many aircraft parameters and is computationally intensive. To alleviate these burdens, we developed a program that generates a simplified trajectory from takeoff to landing that includes turning maneuvers. In this paper, dynamic motions such as pitch up/down and lateral-directional motions such as steady sideslip, which are required in DO-334, were newly incorporated into the trajectory generation program, and inertial navigation and GPS navigation were performed along the output trajectory to confirm the usefulness of the verification system. The obtained navigation outputs were consistent with the characteristics of true data, and confirmed that the influence of flight test maneuvers on the navigation could be evaluated. It was therefore demonstrated that the system can simulate the DO-334-based verification of a navigation algorithm.
Performance Verification System for Navigation Algorithm~Simulation of Flight Evaluation Profile Specified in RTCA DO-334 MOPS~
Lect. Notes Electrical Eng.
Asia-Pacific International Symposium on Aerospace Technology ; 2021 ; Korea (Republic of) November 15, 2021 - November 17, 2021
The Proceedings of the 2021 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2021), Volume 2 ; Kapitel : 33 ; 453-468
30.09.2022
16 pages
Aufsatz/Kapitel (Buch)
Elektronische Ressource
Englisch
New RTCA MOPS Sheds Fresh Light On Electrical Role of Radomes
Online Contents | 1994
|British Library Conference Proceedings | 2007
|