Finger knuckle print is one of the most important biometric traits and plays a vital role in a secure identification system. In this paper, performance evaluation of local binary pattern (LBP) and its variants center symmetric local binary pattern (CS-LBP) and median local binary pattern (MLBP) are investigated. After feature extraction, a support vector machine (SVM) with the linear kernel is used for the performance evaluation of two different datasets named the Poly-U FKP dataset and the USM-FKP dataset. The experimental results show that CS-LBP performs better for the USM-FKP dataset with an accuracy of 86.2% which demonstrates the potential of the FKP classification system.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Finger Knuckle Print Classification System Using SVM for Different LBP Variants


    Weitere Titelangaben:

    Lect. Notes Electrical Eng.


    Beteiligte:
    Ahmad, Nur Syazreen (Herausgeber:in) / Mohamad-Saleh, Junita (Herausgeber:in) / Teh, Jiashen (Herausgeber:in) / Riaz, Imran (Autor:in) / Ali, Ahmad Nazri (Autor:in) / Huqqani, Ilyas Ahmad (Autor:in)

    Kongress:

    International Conference on Robotics, Vision, Signal Processing and Power Applications ; 2021 April 05, 2021 - April 06, 2021



    Erscheinungsdatum :

    31.03.2024


    Format / Umfang :

    8 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Knuckle casting and knuckle

    KARIYA TOMOICHIRO | Europäisches Patentamt | 2024

    Freier Zugriff

    Personal identification using the rank level fusion of finger-knuckle-prints

    Grover, J. / Hanmandlu, M. | British Library Online Contents | 2017


    KNUCKLE CAST AND KNUCKLE

    KARIYA TOMOICHIRO | Europäisches Patentamt | 2023

    Freier Zugriff

    KNUCKLE

    SHINOHARA NORIYUKI | Europäisches Patentamt | 2016

    Freier Zugriff