Reinforcement learning (RL) has recently been applied to solve railway timetabling problems. In this paper, we provide a detailed overview of the state-of-the-art research for RL in railway timetabling. Specifically, we categorize RL into basic RL and deep reinforcement learning (DRL), and further divide the research of railway timetabling into scheduling and rescheduling for exhaustively review and discussion. The present research on RL in railway timetabling is still in the primary stage and the scale of problems that can be solved is still limited. However, the applications of RL shows great promise and excitement, with significant potential for addressing various challenges in railway planning and management in the future.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Literature Review of Reinforcement Learning in Railway Timetabling


    Weitere Titelangaben:

    Lecture Notes in Civil Engineering


    Beteiligte:
    Meng, Lingyun (Herausgeber:in) / Qian, Yongsheng (Herausgeber:in) / Bai, Yun (Herausgeber:in) / Lv, Bin (Herausgeber:in) / Tang, Yuanjie (Herausgeber:in) / Wang, Yan (Autor:in) / Fan, Jiaming (Autor:in) / Han, Ruihao (Autor:in) / Chen, Angyang (Autor:in) / He, Junyuan (Autor:in)

    Kongress:

    International Conference on Traffic and Transportation Studies ; 2024 ; Lanzhou, China August 23, 2024 - August 25, 2024



    Erscheinungsdatum :

    14.11.2024


    Format / Umfang :

    10 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Passenger Perspectives in Railway Timetabling: A Literature Review

    Parbo, Jens / Nielsen, Otto Anker / Prato, Carlo Giacomo | Taylor & Francis Verlag | 2016



    Railway Timetabling and Capacity

    Pachl, Jörn | BASE | 2024

    Freier Zugriff

    Railway Timetabling and Capacity

    Pachl, Jörn | DataCite | 2024

    Freier Zugriff