Automotive diagnostics tend to advance in tandem with the development of automotive technology, as more systems are embedded in a vehicle, it becomes difficult to coordinate all the components so that they work in harmony. Apart from the complexity of the systems, it is also necessary to consider the customer demand for vehicles that provide greater goods and safety, so this study introduces AutoDiag, an innovative automotive diagnostic system that revolutionizes vehicle maintenance through remote diagnosis powered by artificial intelligence and embedded systems. The system not only accurately diagnoses vehicle faults, but also predicts the remaining life of vehicle subsystems, enhancing reliability, safety, and longevity. Based on previous scientific research and studying the shortcomings of existing systems, AutoDiag integrates multiple technologies using embedded systems and Artificial Intelligence (AI) through Internet of Things (IoT), to analyze vehicle sensor data. The results of the AutoDiag System have proven its high effectiveness The performance of AutoDiag was evaluated using metrics such as Root Mean Square Error (RMSE) which achieved 86.05 and demonstrating superior diagnostic accuracy on real-time data. This significantly improves vehicle efficiency and contributes to the sustainable development of the automotive industry.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    AUTODIAG: Revolutionizing Automotive Maintenance Remote Diagnostics Empowered Using Artificial Intelligence and Embedded Systems Through IoT


    Weitere Titelangaben:

    Lect. Notes on Data Eng. and Comms.Technol.


    Beteiligte:
    Hassanien, Aboul Ella (Herausgeber:in) / Rizk, Rawya Y. (Herausgeber:in) / Darwish, Ashraf (Herausgeber:in) / Alshurideh, Muhammad Turki Raji (Herausgeber:in) / Snášel, Vaclav (Herausgeber:in) / Tolba, Mohammed F. (Herausgeber:in) / Adel, Eman (Autor:in) / Saleh, Ahmed (Autor:in) / Samir, Ahmed (Autor:in) / Essam, Emily (Autor:in)

    Kongress:

    International Conference on Advanced Intelligent Systems and Informatics ; 2025 ; Port Said, Egypt January 19, 2025 - January 21, 2025



    Erscheinungsdatum :

    21.02.2025


    Format / Umfang :

    9 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Role of Artificial Intelligence in Revolutionizing the Automotive Industry: A Review

    Verma Jai Krishan / Kanday Rajeev / Gupt Sachin | DOAJ | 2024

    Freier Zugriff

    Revolutionizing Transportation System Using Artificial Intelligence Technique

    Sony, Anuj Kumar / Bhushan, Bharat / Astya, Rani | IEEE | 2023


    Artificial Intelligence Empowered Models for UAV Communications

    Pradhan, Nilanjana / Sille, Roohi / Sagar, Shrddha | Springer Verlag | 2022


    Revolutionizing Shipboard Maintenance

    Fry, R. M. / SAE | British Library Conference Proceedings | 1994


    REMOTE AUTOMOTIVE DIAGNOSTICS

    CURT JINGLE / FRANK TERLEP | Europäisches Patentamt | 2020

    Freier Zugriff