A fast implementation of recursive DFTs is presented. It only needs (N-1)/2 real multiplications to compute all N frequency components. A factor \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{T}$$\end{document} is introduced. If the ratio \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{m}/T_{a}$$\end{document} of multiplier’s and adder’s period is greater than \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{T}$$\end{document}, this scheme is faster than FFT. The error of systems is studied. A parallel scheme of adders is proposed. This scheme is much faster than the usual serial adder. A scheme for fast re-ordering the input data is proposed. This increases the reordering speed and saves the memory size.
Fast Implementation of Recursive DFTs
Footprints in Cambridge and Aviation Industries of China ; Kapitel : 9 ; 100-106
20.09.2021
7 pages
Aufsatz/Kapitel (Buch)
Elektronische Ressource
Englisch
Optimum Coefficients for Recursively Computing DFTs
Springer Verlag | 2021
|MTI Improvement Factors for Weighted DFTs
IEEE | 1980
|British Library Online Contents | 2016
|