As Low Earth Orbit satellites play a vital role in the 6G space network, the risk caused by space debris has become increasingly significant. This paper presents a comprehensive risk prediction model for LEO satellites to enhance the safety and reliability of satellite communication systems. We introduce a novel feature, Orbital Risk Factor (ORF), which Identifies and Detects orbital risk for LEO satellites. This research focuses on the performance evaluation of various machine learning techniques used to address the debris threat to LEO satellites using the data acquired from the European Space Agency (ESA) RCS database. The Synthetic Minority Oversampling Technique (SMOTE) is applied to solve the imbalance classification problem. The experiments show that the Support Vector Machine (SVM) with SMOTE and Ensemble classifier Random Forest, Gradient Boosting, and Extra Tree classifier got the highest accuracy compared to other techniques. The SMOTE based classification increases the accuracy by 10-15%. By applying these advanced classification methods, We identify and categorize debris objects based on their Orbital risk factor for LEO satellites. Our proposed solution involves dynamic risk assessment and predictive analytics to provide real-time alerts and mitigation strategies, ensuring the integrity and efficiency of LEO satellite operations within the 6G network.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Space Debris Risk Prediction Model For LEO Satellites


    Weitere Titelangaben:

    Advances in intell. Systems Research


    Beteiligte:
    Ahlawat, Priyanka (Herausgeber:in) / Verma, Vijay (Herausgeber:in) / Verma, Pratishtha (Herausgeber:in) / Sharma, Shweta (Herausgeber:in) / Naz, Arshee (Autor:in) / Verma, Karan (Autor:in) / Sikka, Geeta (Autor:in)

    Kongress:

    International Conference on Deep Learning, Artificial Intelligence and Robotics ; 2024 ; Managalore, India December 06, 2024 - December 08, 2024



    Erscheinungsdatum :

    25.06.2025


    Format / Umfang :

    11 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Fast and flexible space debris risk assessment for satellites

    Gulde, Max / Kempf, Scott / Schäfer, Frank | DataCite | 2016


    Fast and flexible space debris risk assessment for satellites

    Gulde, Max / Kempf, Scott / Schäfer, Frank | Fraunhofer Publica | 2016

    Freier Zugriff


    Apparatus for holding large space debris and satellites

    STEPHEN DESMOND LEWIS | Europäisches Patentamt | 2025

    Freier Zugriff

    Apparatus for holding large space debris and satellites

    Europäisches Patentamt | 2023

    Freier Zugriff