With the growing development of autonomous navigation technologies, transportation systems have become safer and hassle-free. However, this decreasing necessity for human intervention has been both a boon and a bane for novel technologies. Utilising autonomous driving systems in highly rugged terrains has become very sophisticated and challenging. Upgradation of persisting navigation technologies in deformed terrains can improve accessibility, economy, security, traffic, and travel time. Therefore, the current preliminary research illustrates an acoustic wave and visual navigation-based rover system that can better navigate by monitoring the terra-formations using the acoustic and visual sensors to receive the reflected signal and image, respectively. The implementation tries to map the sensed world to a digital twin that the rover navigates through. The realisation of the model and the essential metrics are illustrated. The extension of the proposed technology to a grander scale in automobiles must be examined in several other environments and more focused on.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Acoustic and Visual Sensor Fusion-Based Rover System for Safe Navigation in Deformed Terrain


    Weitere Titelangaben:

    Proceedings in Adaptation, Learning and Optimization


    Beteiligte:
    Sharma, Harish (Herausgeber:in) / Saha, Apu Kumar (Herausgeber:in) / Prasad, Mukesh (Herausgeber:in) / Pothapragada, Pranav (Autor:in) / Neelamraju, Pavan Mohan (Autor:in)

    Kongress:

    International Conference on Intelligent Vision and Computing ; 2022 ; Tripura, India November 26, 2022 - November 27, 2022



    Erscheinungsdatum :

    01.05.2023


    Format / Umfang :

    10 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Multi-Mission Terrain Classifier for Safe Rover Navigation and Automated Science

    Ono, Masahiro / Hasnain, Zaki / Didier, Annie et al. | NTRS | 2022



    Multi-mission Terrain Classifier for Safe Rover Navigation and Automated Science

    Atha, Deegan / Swan, R. Michael / Didier, Annie et al. | IEEE | 2022


    Visual terrain matching for a Mars rover

    Gennery, D.B. | Tema Archiv | 1989


    Navigation of a martian rover in very rough terrain

    Jarvis, Ray | Springer Verlag | 2008