This chapter explores how robots perceive their environment using various sensors and process visual data through CNNs and transformers for tasks like classification, segmentation, and object detection. It discusses the trade-offs between different CNN-based models and highlights the advantages of vision transformers (ViT) and detection transformers (DETR) in capturing global context. The chapter also covers scalability and emerging transformer-based methods beneficial for robotics applications.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Robot Perception: Sensors and Image Processing


    Beteiligte:

    Erschienen in:

    AI for Robotics ; Kapitel : 2 ; 35-105


    Erscheinungsdatum :

    03.05.2025


    Format / Umfang :

    71 pages




    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Human Color-Perception Oriented Image Processing

    Kano, H. / Genno, H. / Fujiwara, Y. et al. | British Library Online Contents | 1993


    Space Robot Perception System

    Wang, Yaobing | Springer Verlag | 2020


    ADAPTIVE PERCEPTION BY VEHICLE SENSORS

    LU JIANBO / FELDKAMP TIMOTHY MARK / HONG SANGHYUN et al. | Europäisches Patentamt | 2022

    Freier Zugriff

    Adaptive perception by vehicle sensors

    LU JIANBO / FELDKAMP TIMOTHY MARK / HONG SANGHYUN et al. | Europäisches Patentamt | 2025

    Freier Zugriff

    Terrain Perception for Robot Navigation

    R. E. Karlsen / G. Witus | NTIS | 2007