This paper explores the application of Deep Reinforcement Learning (DRL) in human-robot collaborative sorting tasks, emphasizing the robot’s adaptability. DRL enables robots to adjust to dynamic environments, including human presence and unknown objects. Using RGB and depth images processed by DenseNet, the robot recognizes and manipulates objects. The proposed approach estimates grasping positions without prior object knowledge, enhancing adaptability in unstructured environments. A Deep Q-Network (DQN) simulation in CoppeliaSim evaluates execution speed, accuracy, and system robustness, demonstrating improved sorting efficiency and safety in human-robot collaboration.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Deep Reinforcement Learning for Adaptive Object Sorting in Collaborative Robotics


    Weitere Titelangaben:

    Lect. Notes in Networks, Syst.


    Beteiligte:
    Karabegović, Isak (Herausgeber:in) / Kovačević, Ahmed (Herausgeber:in) / Mandžuka, Sadko (Herausgeber:in) / Subašić, Haris (Autor:in) / Banjanović-Mehmedović, Lejla (Autor:in) / Subašić, Selma (Autor:in) / Karabegović, Isak (Autor:in) / Prljača, Naser (Autor:in)

    Kongress:

    International Conference “New Technologies, Development and Applications” ; 2025 ; Sarajevo, Bosnia and Herzegovina June 26, 2025 - June 28, 2025



    Erscheinungsdatum :

    27.06.2025


    Format / Umfang :

    9 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Railway Sorting Robotics

    Shabelnikov, A. N. | Springer Verlag | 2020


    Color Based Object Sorting System using Deep Learning

    Pratik Roy / Satakshi Roy / Rahul Agrawal et al. | BASE | 2020

    Freier Zugriff