With the widespread use of drones in the military field, future battlefields will use more and more drones, so the collaborative planning of drones is becoming more and more important. A multi-UAV flight path planning model was established and an effective model solving algorithm was studied. Aiming at the detection of mountainous areas, this paper proposes a mountain layered model optimization method based on ant colony algorithm. The search conditions of the ant colony algorithm are optimized, and the time and space complexity of the ant colony algorithm is reduced.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Research on UAV Path Planning with Mountain Stratification Model Based on Ant Colony Algorithm


    Weitere Titelangaben:

    Lect. Notes Electrical Eng.


    Beteiligte:
    Yan, Liang (Herausgeber:in) / Duan, Haibin (Herausgeber:in) / Yu, Xiang (Herausgeber:in) / Yang, Fan (Autor:in) / Fang, Xi (Autor:in) / Li, Hao (Autor:in) / Jin, Hongbin (Autor:in) / Zhang, Liang (Autor:in)


    Erscheinungsdatum :

    30.10.2021


    Format / Umfang :

    11 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Research on UAV Path Planning with Mountain Stratification Model Based on Ant Colony Algorithm

    Yang, Fan / Fang, Xi / Li, Hao et al. | British Library Conference Proceedings | 2022




    UAV path planning based on improved ant colony algorithm

    Li, Guangxing / Li, Yuan | SPIE | 2023