Accumulation of pollutants on ceramic insulators is one of the major causes of dry band arcing, a predecessor to flashovers, which may further cause major outages of electricity. It is critical to know locations of polluted insulators to prevent flashovers to make the power-grid reliable. This paper proposes a solution to detect the location of polluted insulators along an overhead transmission line using a quadcopter. Once provided with the GPS locations of the electrical powerline transmission towers, the quadcopter autonomously hovers along the line. And while doing so, it sends a live video feed of the transmission line to the ground station. A pre-trained neural network on the ground station then detects insulators in the video and classifies the detected insulators as polluted or clean. Only if the insulator detected is polluted, its location is recorded and reported back to the ground station. The novelty of this work is the use of a drone to automate the process of insulator inspection via a deep learning based neural network approach. Experiments show that accurate inspection results are obtained. This work is an initial step in the direction of achieving completely autonomous drone-based powerline insulator inspection.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Autonomous Drone-Based Powerline Insulator Inspection via Deep Learning


    Weitere Titelangaben:

    Advs in Intelligent Syst., Computing


    Beteiligte:
    Silva, Manuel F. (Herausgeber:in) / Luís Lima, José (Herausgeber:in) / Reis, Luís Paulo (Herausgeber:in) / Sanfeliu, Alberto (Herausgeber:in) / Tardioli, Danilo (Herausgeber:in) / Muhammad, Anas (Autor:in) / Shahpurwala, Adnan (Autor:in) / Mukhopadhyay, Shayok (Autor:in) / El-Hag, Ayman H. (Autor:in)

    Kongress:

    Iberian Robotics conference ; 2019 ; Porto, Portugal November 20, 2019 - November 22, 2019



    Erscheinungsdatum :

    20.11.2019


    Format / Umfang :

    11 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Autonomous Drone-Based Powerline Insulator Inspection via Deep Learning

    Muhammad, Anas / Shahpurwala, Adnan / Mukhopadhyay, Shayok et al. | TIBKAT | 2020


    Indoor Autonomous Powerline Inspection Model

    Avila, Jovany / Brouwer, Tristan | IEEE | 2021


    Drone system for powerline inspection using radio frequency scanning techniques

    WONG KHOI LOON | Europäisches Patentamt | 2025

    Freier Zugriff

    DRONE SYSTEM FOR POWERLINE INSPECTION USING RADIO FREQUENCY SCANNING TECHNIQUES

    WONG KHOI LOON | Europäisches Patentamt | 2024

    Freier Zugriff

    DRONE SYSTEM FOR POWERLINE INSPECTION USING RADIO FREQUENCY SCANNING TECHNIQUES

    WONG KHOI LOON | Europäisches Patentamt | 2022

    Freier Zugriff