Obstacle avoidance in aerial robotics remains a critical challenge, particularly in environments with uncertain terrain and weather conditions. This study introduces a Constrained Q-Learning model that leverages spatio-temporal data from LiDAR and OctoMap to achieve Zero-Shot Execution (ZSE) for autonomous Unmanned Aerial Vehicle (UAV) navigation in unseen environments, eliminating the need for iterative training. Experimental evaluations are conducted using a high-fidelity simulator across three environments: random forests, clustered forests, and metropolitan areas, under varying obstacle densities and flight velocities. The proposed model demonstrates a 100% success rate, achieving average flight times of 45 s for slow velocities (below 2.5 m/s) and 34 s for fast velocities (above 2.5 m/s). Comparative analysis with 90 Human-to-Computer (HTC) flights (slow and fast velocities), conducted by three pilots under identical conditions, shows the proposed model reduces flight time by 33% (1.5 times faster) while enhancing path optimization. Additionally, the model matches the path selection efficiency of a standard Q-Learning approach without requiring iterative training, highlighting its robustness and scalability for autonomous UAV navigation in complex environments and GPS-denied locations.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Autonomous Navigation in Swarm of UAVs Using Spatio Temporal Data and Constrained-Reinforcement Learning


    Weitere Titelangaben:

    Communic.Comp.Inf.Science


    Beteiligte:
    Iliadis, Lazaros (Herausgeber:in) / Maglogiannis, Ilias (Herausgeber:in) / Kyriacou, Efthyvoulos (Herausgeber:in) / Jayne, Chrisina (Herausgeber:in) / Shrivastava, Abhudaya (Autor:in) / Petridis, Christos (Autor:in) / Vacic, Marijana (Autor:in) / Obradovic, Zoran (Autor:in)

    Kongress:

    International Conference on Engineering Applications of Neural Networks ; 2025 ; Limassol, Cyprus June 26, 2025 - June 29, 2025



    Erscheinungsdatum :

    22.06.2025


    Format / Umfang :

    14 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch






    Supporting UAVs Swarm Missions by Multi-Agent Reinforcement Learning

    Fusco, P. / Porcelli, L. / Palmieri, F. et al. | IEEE | 2025


    Spatio‐temporal dynamic navigation for electric vehicle charging using deep reinforcement learning

    Ali Can Erüst / Fatma Yıldız Taşcıkaraoğlu | DOAJ | 2024

    Freier Zugriff

    Spatio‐temporal dynamic navigation for electric vehicle charging using deep reinforcement learning

    Erüst, Ali Can / Taşcıkaraoğlu, Fatma Yıldız | Wiley | 2024

    Freier Zugriff