With the popularization of scenarios where intelligent connected vehicles (ICVs) and human-driven vehicles (HDVs) coexist, the current high-priority vehicle traffic strategy is difficult to effectively play a role in mixed traffic flow. Therefore, a reinforcement learning based method is proposed. Firstly, use SUMO to build the model. Secondly, the Proximal Policy Optimization (PPO) algorithm is adopted to adjust the longitudinal speed of ICVs, the longitudinal spacing between basic units of sparse heterogeneous mixed traffic flow, and collaborate with high-priority vehicles to change lanes and overtake. Finally, validate the model in different scenarios. The results indicate that this method is suitable for scenarios with heterogeneous mixed traffic flow and full ICVs; Compared to the lane pre-clearance strategy, this strategy reduces the passing time of high-priority vehicles by 17.39% and 5.09% in distance, respectively; The overall number of lane changes has decreased by 75%, significantly reducing the impact on weekly traffic.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Decision-Making for Priority Vehicle Transit Based on Multi-agent Reinforcement Learning


    Weitere Titelangaben:

    Lect. Notes Electrical Eng.


    Beteiligte:
    Liu, Lianqing (Herausgeber:in) / Niu, Yifeng (Herausgeber:in) / Fu, Wenxing (Herausgeber:in) / Qu, Yi (Herausgeber:in) / Yang, Yi (Autor:in) / Huang, Zhongguo (Autor:in) / Gu, Qing (Autor:in) / Meng, Yu (Autor:in) / Fang, Huazhen (Autor:in)

    Kongress:

    International Conference on Autonomous Unmanned Systems ; 2024 ; Shenyang, China September 19, 2024 - September 21, 2024



    Erscheinungsdatum :

    02.04.2025


    Format / Umfang :

    14 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Vehicle-station-network interaction decision-making method based on multi-agent deep reinforcement learning

    ZHANG JIAN / XI YANJUN / WANG QIANG et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    Intersection decision-making method based on multi-agent deep reinforcement learning

    DU YU / JIANG ANNI / ZHAO SHIXIN et al. | Europäisches Patentamt | 2024

    Freier Zugriff