This paper mainly discusses a method of bringing the copter to one target point rapidly and steadily at the same time. By building a physic-based offline simulation environment for a quadrotor, raw data from sensors are emulated. Meanwhile the states and motion locus can be estimated via a Kalman filter fusing the data from multi sensors. With the inputs of states and action of the copter, a control method based on Deep Deterministic Policy Gradient (DDPG) is introduced. In this paper, the feasibility of this approach is analyzed, and its availability is proved by the simulation experiment. The experimental results show this method enhances the robustness and rapidity in the control process, which will improve the performance of the whole copter system.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Control Method for Quadrotor Based on DDPG


    Weitere Titelangaben:

    Lect. Notes Electrical Eng.


    Beteiligte:
    Yan, Liang (Herausgeber:in) / Duan, Haibin (Herausgeber:in) / Yu, Xiang (Herausgeber:in) / Chen, Shuo (Autor:in) / Xiao, Jin (Autor:in) / Hu, Cun Yi (Autor:in)


    Erscheinungsdatum :

    30.10.2021


    Format / Umfang :

    13 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    A Control Method for Quadrotor Based on DDPG

    Chen, Shuo / Xiao, Jin / Hu, Cun Yi | TIBKAT | 2022


    A Control Method for Quadrotor Based on DDPG

    Chen, Shuo / Xiao, Jin / Hu, Cun Yi | British Library Conference Proceedings | 2022


    Deep Deterministic Policy Gradient (DDPG) Agent-Based Sliding Mode Control for Quadrotor Attitudes

    Wenjun Hu / Yueneng Yang / Zhiyang Liu | DOAJ | 2024

    Freier Zugriff

    Quadcopter UAV attitude control based on DDPG

    HUANG Xijie | DOAJ | 2024

    Freier Zugriff

    Improvement of the DDPG algorithm via twin delayed DDPG (TD3) on vertical rocket landing control system

    Maz, Faisal Amir / Prajitno, Prawito / Andiarti, Rika et al. | American Institute of Physics | 2023