Abstract The dockless shared bikes flourish as a new concept in recent years. It allows users to find bikes anywhere via a GPS-based mobile application, and flexible cycling and parking the bikes in the same way. From the bike trajectory data produced by Users, we can extract bike flow patterns for better urban planning and Point-of-Interest (POI) recommendation. In this paper, through conducting the spatio-temporal representations of bike activity acquired from bike trajectory logs, we first design a graph clustering model With sparsity constraints that combine time information to explore potential patterns of bike flow. Next, by comparing historical trajectory logs and POI information with the flow patterns, we dig out several typical categories of bike flow patterns, which can give suggestions for further urban planning and POI recommendation. Further, our experiments via Mobike trajectory data demonstrate the effectiveness of bike flow pattern discovery.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Latent Flow Patterns Discovery by Dockless Bike Trajectory Data for Demand Analysis


    Beteiligte:
    Ling, Chao (Autor:in) / Gu, JingJing (Autor:in) / Sun, Ming (Autor:in)


    Erscheinungsdatum :

    01.01.2019


    Format / Umfang :

    14 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Forecasting usage and bike distribution of dockless bike-sharing using journey data

    Hua, Mingzhuang / Chen, Jingxu / Chen, Xuewu et al. | IET | 2020

    Freier Zugriff

    Dockless Bike-Sharing Rebalancing Problem with Simultaneous Faulty Bike Recycling

    Usama, Muhammad / Zahoor, Onaira / Bao, Qiong et al. | ASCE | 2019


    Dockless bike-sharing systems: what are the implications?

    Chen, Zheyan / van Lierop, Dea / Ettema, Dick | Taylor & Francis Verlag | 2020

    Freier Zugriff


    Short-Term Forecasting of Dockless Bike-Sharing Demand with the Built Environment and Weather

    Yang Yang / Xin Shao / Yuting Zhu et al. | DOAJ | 2023

    Freier Zugriff