Fast and precise indoor pedestrian positioning is essential for location-based services. Traditional inertial-based methods suffer from drift in long-term tracking, while visual navigation lacks accuracy in challenging environments. This paper proposes a robust LiDAR-inertial odometry (LIO) approach for accurate long-term pedestrian trajectory estimation. Our method incorporates pedestrian motion constraints and loop closure correction using small-size solid-state LiDAR and low-cost MEMS sensors. By leveraging foot-mounted MIMU with zero-velocity gait, we reduce the computational cost of loop closure detection during LiDAR point cloud keyframe construction. We also introduce a two-stage loop closure detection algorithm based on position and point cloud descriptor similarity to correct cumulative errors in the LIO. Experimental results demonstrate competitive positioning accuracy, with an error of 1.0 m observed during a pedestrian walking of 500 m.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Robust Pedestrian LiDAR-Inertial Odometry with Motion Constraints and Loop-Closing


    Weitere Titelangaben:

    Lect. Notes Electrical Eng.


    Beteiligte:
    Yan, Liang (Herausgeber:in) / Duan, Haibin (Herausgeber:in) / Deng, Yimin (Herausgeber:in) / Pan, Xianfei (Autor:in) / Chen, Zongyang (Autor:in) / Tu, Zheming (Autor:in) / Chu, Chaoqun (Autor:in) / Chen, Changhao (Autor:in)

    Kongress:

    International Conference on Guidance, Navigation and Control ; 2024 ; Changsha, China August 09, 2024 - August 11, 2024



    Erscheinungsdatum :

    04.03.2025


    Format / Umfang :

    12 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Hierarchical Distribution-Based Tightly-Coupled LiDAR Inertial Odometry

    Wang, Chengpeng / Cao, Zhiqiang / Li, Jianjie et al. | IEEE | 2024


    Piecewise Linear De-skewing for LiDAR Inertial Odometry

    Henawy, John / Li, Zhengguo / Yau, Wei Yun et al. | IEEE | 2021


    InLIOM: Tightly-Coupled Intensity LiDAR Inertial Odometry and Mapping

    Wang, Hanqi / Liang, Huawei / Li, Zhiyuan et al. | IEEE | 2024



    LIO-LOT: Tightly-Coupled Multi-Object Tracking and LiDAR-Inertial Odometry

    Li, Xingxing / Yan, Zhuohao / Feng, Shaoquan et al. | IEEE | 2025