Soil conditioning is crucial in maintaining stability during earth pressure balance (EPB) shield tunneling. Understanding the properties of the soil conditioner and its impact on soil is essential for ensuring the safety of the tunneling. This study focuses on investigating the penetration behavior of foam, a commonly used soil conditioner, in saturated sand. Experiments were conducted using a sand column device to simulate the foam penetration process in different sand beds. The experimental results reveal that foam penetration in the sand forms two linear pore pressure drop regions with different gradients, with the foam penetration area occupying the majority of the pore pressure. The foam penetration also introduces a flow velocity reduction in the sand column, resulting in blocking. Furthermore, a notable correlation emerged between the foam penetration velocity and the hydraulic gradient, akin to Darcy's law but with a different expression equation. The findings contribute to enhancing our understanding of soil conditioning in EPB shield tunneling and support the design of safer and more efficient tunneling processes.
Foam Penetration Behavior in EPB Shield Tunneling: Insights from Model Experiments
Lecture Notes in Civil Engineering
International Conference on Transportation Geotechnics ; 2024 ; Sydney, NSW, Australia November 20, 2024 - November 22, 2024
Proceedings of the 5th International Conference on Transportation Geotechnics (ICTG) 2024, Volume 3 ; Kapitel : 10 ; 103-111
23.10.2024
9 pages
Aufsatz/Kapitel (Buch)
Elektronische Ressource
Englisch
Shield tunneling machine cutterhead, cutter changing method and shield tunneling machine
Europäisches Patentamt | 2023
|Trans Tech Publications | 2013
|