Light rail vehicles (LRV) are becoming more attractive for urban centres as a sustainable mass transportation solution. The tight curves and short transitions that characterise urban LRV networks lead to high wear and undesirable vehicle dynamics that can be avoided with active suspensions or traction control algorithms. This paper presents a comparison on the dynamic performance and curve negotiation of LRV with solid wheelsets and independently rotating wheels (IRW) with different traction control systems. Two multibody simulations were conducted to compare slip, angle of attack (AoA) and other vehicle dynamics parameters. The traction control was set to operate at the maximum traction conditions with a slip set point. The wheel-rail contact model included the effects of slip-dependent friction variations. It was found that the LRV with IRW reduced the lateral wheel-rail contact forces, traction coefficients and wheel torque when negotiating a curve, while maintaining the AoA performance. The results indicate that with an appropriate traction control algorithm, a LRV with IRW can be more track friendly than a solid wheelsets LRV when negotiating a curve in maximum traction conditions.
Traction Control Algorithms Versus Dynamic Performance in Light Rail Vehicle Design Architectures
Lect.Notes Mechanical Engineering
The IAVSD International Symposium on Dynamics of Vehicles on Roads and Tracks ; 2021 August 17, 2021 - August 19, 2021
06.08.2022
10 pages
Aufsatz/Kapitel (Buch)
Elektronische Ressource
Englisch
RAIL VEHICLE TRACTION SYSTEM AND ASSOCIATED RAIL VEHICLE
Europäisches Patentamt | 2024
|Traction vehicle for ladle rail transport vehicle and traction method of traction vehicle
Europäisches Patentamt | 2023
|