In this chapter, we discuss potential opportunities and challenges associated with applications of reinforcement learning (RL) in the aerospace domain. In particular, we focus on problems related to sensor resource management, autonomous navigation, advanced manufacturing, maintenance, repair and overhaul operations, and human-machine collaboration. We present two detailed RL case studies related to sensor tasking for aerial surveillance and robot control in an additive manufacturing application which utilizes different flavors of RL including the more recent deep RL framework. Finally, we highlight some ongoing research developments which could address key challenges in deploying RL in the aerospace domain.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Reinforcement Learning: An Industrial Perspective


    Weitere Titelangaben:

    Studies in Systems, Decision and Control


    Beteiligte:
    Vamvoudakis, Kyriakos G. (Herausgeber:in) / Wan, Yan (Herausgeber:in) / Lewis, Frank L. (Herausgeber:in) / Cansever, Derya (Herausgeber:in) / Surana, Amit (Autor:in)


    Erscheinungsdatum :

    24.06.2021


    Format / Umfang :

    26 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Rate Adaptation by Reinforcement Learning for Wi-Fi Industrial Networks

    Peserico, G / Fedullo, T / Morato, A et al. | BASE | 2020

    Freier Zugriff


    Multi-hop Computational Offloading with Reinforcement Learning for Industrial IoT Networks

    Roy, S. Barman / Tan, Ernest / Madhukumar, A. S. | IEEE | 2023



    REINFORCEMENT LEARNING DEVICE

    WATANABE MASAHIKO / IZUMINA KATSURO / HSIEH WEI-FEN | Europäisches Patentamt | 2024

    Freier Zugriff