Identification of people at risk of chronic diseases at an early stage are of great significance. With the help of machine learning technology, the complex hidden correlation between chronic disease risk factors can be mined, and disease early warning models can be established. However, the accuracy of machine learning algorithm is closely related to the parameters of the model, which also restricts the application of machine learning in chronic disease prediction. In view of the above problems, this paper designs a solution to automatically predict the risk of chronic diseases based on Auto-Sklearn, evaluates and compares the models trained by Sklearn and Auto-Sklearn, and the accuracy of the model trained by Automated Machine Learning (AutoML) reaches 89.6%, which verifies the high performance of AutoML model. Furthermore, visualization technology is used to display the data cleaning process and explain the black box problem of AutoML model. This scheme demonstrates the usability in predicting chronic disease.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Research on Identification of Chronic Disease Using Automated Machine Learning


    Weitere Titelangaben:

    Lect. Notes Electrical Eng.


    Beteiligte:
    Wang, Yi (Herausgeber:in) / Martinsen, Kristian (Herausgeber:in) / Yu, Tao (Herausgeber:in) / Wang, Kesheng (Herausgeber:in) / Cai, Hongxia (Autor:in) / Shen, Tianjie (Autor:in) / Xu, Jian (Autor:in)

    Kongress:

    International Workshop of Advanced Manufacturing and Automation ; 2020 ; Zhanjiang, China October 12, 2020 - October 13, 2020



    Erscheinungsdatum :

    23.01.2021


    Format / Umfang :

    9 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Research on Identification of Chronic Disease Using Automated Machine Learning

    Cai, Hongxia / Shen, Tianjie / Xu, Jian | TIBKAT | 2021


    Identification of Heart Disease Using Machine Learning Approach

    Anbukkarasi, S / Varadhaganapathy, S / Indhiraprakash, P et al. | IEEE | 2021


    Prominent Prediction Model for Chronic Diabetes Disease Using Machine Learning

    Singh, Gurpreet / Mamta / Singh, Jaspreet et al. | IEEE | 2022


    A Novel Approach to Predict Chronic Kidney Disease using Machine Learning Algorithms

    Gudeti, Bhavya / Mishra, Shashvi / Malik, Shaveta et al. | IEEE | 2020


    Automated Vehicle Identification Based on Car-Following Data With Machine Learning

    Li, Qianwen / Li, Xiaopeng / Yao, Handong et al. | IEEE | 2023