At present, convolutional neural network has achieved good results in text emotional classification, but in several common models, it does not make use of a large number of prior knowledge that human society has now acquired. This paper proposes a new CNN model based on emotional dictionary: emotional knowledge-CNN (EK-CNN), which uses emotional dictionary as additional knowledge to improve the performance of the model in emotional classification. The model has been validated on three real data sets, and is superior to the existing technology model for text emotion classification.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Convolutional Neural Network Combined with Emotional Dictionary Apply in Chinese Text Emotional Classification


    Weitere Titelangaben:

    Smart Innovation, Systems and Technologies


    Beteiligte:
    Balas, Valentina Emilia (Herausgeber:in) / Pan, Jeng-Shyang (Herausgeber:in) / Wu, Tsu-Yang (Herausgeber:in) / Mao, Gui-Han (Autor:in) / Fan, Jian-Cong (Autor:in) / Zhang, Yi-Ming (Autor:in)


    Erscheinungsdatum :

    02.07.2021


    Format / Umfang :

    12 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Convolutional Neural Networks for Chinese Sentiment Classification of Social Network

    He, Jia / Zou, Maoyang / Liu, Ping | British Library Conference Proceedings | 2017


    EMOTIONAL RESPONSE INDUCEMENT SYSTEM AND EMOTIONAL RESPONSE INDUCEMENT METHOD

    HOSODA YASUHIDE | Europäisches Patentamt | 2017

    Freier Zugriff

    Fahrgäste emotional binden

    Grotrian, Jobst / Sonderegger, Roger | IuD Bahn | 2006


    Emotional Driving Experiences

    Gomez, R. / Popovic, V. / Bucolo, S. | British Library Conference Proceedings | 2008