Abstract In this paper, an integrated neurofuzzy-JITL model is proposed for batch processes. The neurofuzzy is employed to build a global model with its excellent extrapolating ability while Just-in-Time Learning (JITL) is used to build the local ARX model due to its good local dynamic modeling ability. In addition, Simulated Annealing (SA) algorithm is adopted to obtain the optimal weights of two models. As a result, the integrated model has better global generalization ability and higher accuracy. Lastly, the effectiveness of the presented integrated neurofuzzy-JITL model is verified by example.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Integrated Neurofuzzy-JITL Model and Its Application in Batch Processes


    Beteiligte:
    Fu, Zhao (Autor:in) / Jia, Li (Autor:in)


    Erscheinungsdatum :

    01.01.2014


    Format / Umfang :

    11 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Integrated Neurofuzzy-JITL Model and Its Application in Batch Processes

    Fu, Z. / Jia, L. | British Library Conference Proceedings | 2014



    Anticipatory Neurofuzzy Control

    Mccullough, Claire L. | NTRS | 1994


    Anticipatory Neurofuzzy Control

    Online Contents | 1994


    Hierarchical neurofuzzy model for real-time flood forecasting

    Rath, S. / Nayak, P.C. / Chatterjee, C. | British Library Online Contents | 2013