Near-earth space continues to be the focus of critical services and capabilities provided to the society. With the steady increase of space traffic, the number of Resident Space Objects (RSOs) has recently boomed in the context of growing concern due to space debris. The need of a holistic and unified approach for addressing orbital collisions, assess the global in-orbit risk, and define sustainable practices for space traffic management has emerged as a major societal challenge. Here, we introduce and discuss a versatile framework rooted on the use of the complex network paradigm to introduce a novel risk index for space sustainability criteria. With an entirely data-driven, but flexible, formulation, we introduce the Resident Space Object Network (RSONet) by connecting RSOs that experience near-collisions events over a finite-time window. The structural collisional properties of RSOs are thus encoded into the RSONet and analysed with the tools of network science. We formulate a geometrical index highlighting the key role of specific RSOs in building up the risk of collisions with respect to the rest of the population. Practical applications based on Two-Line Elements and Conjunction Data Message databases are presented.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    The Resident Space Objects Network: A Complex System Approach for Shaping Space Sustainability


    Weitere Titelangaben:

    J Astronaut Sci


    Beteiligte:


    Erscheinungsdatum :

    25.06.2024




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    The Resident Space Objects Network: A Complex System Approach for Shaping Space Sustainability

    Romano, Matteo / Carletti, Timoteo / Daquin, Jérôme | Springer Verlag | 2024


    Ballistic Coefficient Prediction for Resident Space Objects

    Russell, R. | British Library Conference Proceedings | 2013


    Machine Learning Classification of Malicious Resident Space Objects

    Whited, Derick / Doyle, Daniel / Black, Jonathan | AIAA | 2022


    Characterization of Resident Space Objects using Light Curves

    Vallverdú Cabrera, David / Universität der Bundeswehr München, Fakultät für Luft- und Raumfahrttechnik | TIBKAT | 2024

    Freier Zugriff

    Machine Learning Classification of Malicious Resident Space Objects

    Whited, Derick / Doyle, Daniel / Black, Jonathan | TIBKAT | 2022