Robotic assistive devices have emerged as a potential complement for repetitive and user-centered gait rehabilitation. In this field, the development of electromyography (EMG)-based torque controls has played a crucial role in improving the user experience with robotic assistive devices. However, most existing approaches for EMG-based joint torque estimation (i) are designed for upper limbs; (ii) often do not consider the complexity of the walking motion, focusing only on the stance phase; and (iii) rely on complex mathematical models that result in time-consuming estimations. This study aims to address these shortcomings by evaluating the generalization ability of a Deep Learning regressor (Convolutional Neural Network (CNN)) for estimating ankle torque trajectories, in real-time. Several inputs were incorporated, namely, EMG signals from Tibialis Anterior and Gastrocnemius Lateralis, hip kinematic data in the sagittal plane (angle, angular velocity, angular acceleration), walking speed (from 1.5 to 2.0 km/h), user’s demographic (gender and age) and anthropometric information (height and mass, ranging from 1.50 to 1.90 m and 50.0 to 90.0 kg, respectively, and shank and foot lengths). Results showed that a CNN model with two convolutional layers showed the highest generalization ability (Root Mean Square Error: 23.4 ± 8.36, Normalized Mean Square Error: 0.494 ± 0.299, and Spearman Correlation 0.754 ± 0.105). CNN model’s time-effectiveness was tested in an active ankle orthosis, being able to estimate ankle joint torques in less than 2 ms. This study contributes to a more time-effective model for real-time EMG-based torque estimation, enabling a promising advancement in EMG-based torque control for lower limb robotic assistive devices.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Real-Time Torque Estimation Using Human and Sensor Data Fusion for Exoskeleton Assistance


    Weitere Titelangaben:

    Lect. Notes in Networks, Syst.


    Beteiligte:
    Marques, Lino (Herausgeber:in) / Santos, Cristina (Herausgeber:in) / Lima, José Luís (Herausgeber:in) / Tardioli, Danilo (Herausgeber:in) / Ferre, Manuel (Herausgeber:in) / Moreira, Luís (Autor:in) / Barbosa, Roberto M. (Autor:in) / Figueiredo, Joana (Autor:in) / Fonseca, Pedro (Autor:in) / Vilas-Boas, João P. (Autor:in)

    Kongress:

    Iberian Robotics conference ; 2023 ; Coimbra, Portugal November 22, 2023 - November 24, 2023



    Erscheinungsdatum :

    27.04.2024


    Format / Umfang :

    12 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Real-Time Torque Estimation Using Human and Sensor Data Fusion for Exoskeleton Assistance

    Moreira, Luis / Barbosa, Roberto M. / Figueiredo, Joana et al. | TIBKAT | 2024


    Real time embedded sensor fusion for driver assistance

    Tucker, M. / Heenan, A. / Buchanan, A. | IEEE | 2005


    Real Time Embedded Sensor Fusion for Driver Assistance

    Tucker, M. R. / Heenan, A. J. / Buchanan, A. J. et al. | British Library Conference Proceedings | 2005



    Load and torque resistant caliper exoskeleton

    BROWN GARRETT W | Europäisches Patentamt | 2015

    Freier Zugriff