Abstract In this paper we present an algorithm for the robust 6D pose estimation with an RGB-D camera in harsh and unstructured environments using object detection. While the pose estimation uses clustering and segmentation to find a robust point in multiple frames to track changes in the position of the camera, its functionality is enhanced with Faster-RCNN for classification and detection, providing the operator with information about the object of interest. This work further facilitates the goal of increasing the robot’s autonomy and helping operators to recover 3D reconstructions of the objects to be manipulated with the robot.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Object Detection and 6D Pose Estimation for Precise Robotic Manipulation in Unstructured Environments


    Beteiligte:


    Erscheinungsdatum :

    18.04.2019


    Format / Umfang :

    12 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Vision-Based Categorical Object Pose Estimation and Manipulation

    Meng, Qiwei / Liao, Jianfeng / Jun, Shao et al. | TIBKAT | 2023


    Vision-Based Categorical Object Pose Estimation and Manipulation

    Meng, Qiwei / Liao, Jianfeng / Jun, Shao et al. | Springer Verlag | 2023


    INTELLIGENT ROBOTIC PERSON FOLLOWING IN UNSTRUCTURED ENVIRONMENTS

    Tarokh, M. / Kuo, J. / Institute for Systems and Technologies for Information, Control and Communication et al. | British Library Conference Proceedings | 2005