Abstract This paper investigates the significance of a traffic signal control scheme that simultaneously adjusts all signal parameters, i.e., cycle time, split time and offset, in a road network. A novel framework of model predictive control (MPC) is designed that overcomes the limitations of other MPC based traffic signal control strategies, which are mostly restricted to control only split or green time in a fixed cycle ignoring signal offset. A simple macroscopic model of traffic tailored to MPC is formulated that describes traffic dynamics in the network at a short sampling interval. The proposed framework is demonstrated using a small road network with dynamically changing traffic flows. The parameters of the proposed model are calibrated by using data obtained from detailed microscopic simulation that yields realistic statistics. The model is transformed into a mixed logical dynamical system that is suitable to a finite horizon, and traffic signals are optimized using mixed integer linear programming (MILP) for a given performance index. The framework makes the signals flexibly turn to red and green by adapting quickly to any changes in traffic conditions. Results are also verified by microscopic traffic simulation and compared with other signal control schemes.
Traffic Signal Control of a Road Network Using MILP in the MPC Framework
International Journal of Intelligent Transportation Systems Research ; 13 , 2 ; 107-118
12.06.2014
12 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
Traffic signal control , Model predictive control , Hybrid dynamical system , Mixed integer linear programming Engineering , Electrical Engineering , Automotive Engineering , Robotics and Automation , Computer Imaging, Vision, Pattern Recognition and Graphics , Civil Engineering , User Interfaces and Human Computer Interaction
Model Predictive Control for urban traffic networks via MILP
Tema Archiv | 2010
|Fast Model Predictive Control for Urban Road Networks via MILP
Online Contents | 2011
|