Most of the sampled data in complex industrial processes are sequential in time. Therefore, the traditional BN learning mechanisms have limitations on the value of probability and cannot be applied to the time series. The model established in Chap. 13 is a graphical model similar to a Bayesian network, but its parameter learning method can only handle the discrete variables. This chapter aims at the probabilistic graphical model directly for the continuous process variables, which avoids the assumption of discrete or Gaussian distributions.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Probabilistic Graphical Model for Continuous Variables


    Weitere Titelangaben:

    Intelligent Control & Learning Systems


    Beteiligte:
    Wang, Jing (Autor:in) / Zhou, Jinglin (Autor:in) / Chen, Xiaolu (Autor:in)


    Erscheinungsdatum :

    03.01.2022


    Format / Umfang :

    15 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Fragments-based object tracking using probabilistic graphical model

    Dake Zhou / Yong Xu / Jingwei Huang et al. | IEEE | 2016


    Mixture of Trees Probabilistic Graphical Model for Video Segmentation

    Badrinarayanan, V. / Budvytis, I. / Cipolla, R. | British Library Online Contents | 2014


    Diagnostic Assistant Based on Graphical Probabilistic Models

    Przytula, K. W. / Smith, S. / SAE | British Library Conference Proceedings | 2004


    Diagnostic assistant based on graphical probabilistic models

    Prytuly,K.W. / Smith,S. / HRL Labs.,US et al. | Kraftfahrwesen | 2004


    Maritime Threat Detection Using Probabilistic Graphical Models

    B. Auslander / K. M. Gupta / D. W. Aha | NTIS | 2012