Numerical optimization of complex systems benefits from the technological development of computing platforms in the last 20 years. Unfortunately, this is still not enough, and a large computational time is necessary for the solution of optimization problems when mathematical models that implement rich (and therefore realistic) physical models are adopted. In this paper, we show how the combination of optimization and Artificial Intelligence (AI), in particular Machine Learning algorithms, can help, strongly reducing the overall computational times, making also possible the use of complex simulation systems within the optimization cycle. Original approaches are proposed.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Machine learning algorithms in ship design optimization


    Weitere Titelangaben:

    SHIP TECHNOLOGY RESEARCH
    D. PERI


    Beteiligte:
    Peri, Daniele (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    02.01.2024


    Format / Umfang :

    13 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Ship Design Performance and Cost Optimization with Machine Learning

    Winter, Roy de / Stein, Bas van / Bäck, Thomas et al. | TIBKAT | 2021

    Freier Zugriff

    Ship design optimization framework

    George Gabriel Cotoc / Liliana Rusu / Florin Pacuraru et al. | DOAJ | 2022

    Freier Zugriff

    A Ship Design Tool Using Genetic Algorithms

    Vasudevan, S. / Rusling, S.C. / Royal Institution of Naval Architects | British Library Conference Proceedings | 2007


    Ship Model for Machine Learning Based Ship Signature Classification

    Patrick Nowak / Delf Sachau / Anton Homm | DataCite | 2025


    Optimization of ship hydrodynamic design

    Basilevsky, Y. / Mizin, I. / Savinov, G. et al. | British Library Conference Proceedings | 1994