Recent advancements in connected automated vehicles (CAVs) and reinforcement learning (RL) hold significant promise for enhancing intelligent traffic control systems. This paper conducts a systematic review of studies on RL-based urban traffic control at signalised intersections, highlighting the significant impact of CAVs on traffic control performance improvement. We first review the fundamental concepts of RL algorithms, establishing a foundational understanding for subsequent RL-based traffic control methods. We then review recent progress in RL-based traffic signal control using CV/CAV trajectory data, RL-based CAV trajectory planning, and the cooperative control of both traffic signals and CAVs at signalised intersections. Our aim is to provide researchers with a comprehensive roadmap for future research in RL-based traffic control at signalised intersections.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A survey on reinforcement learning-based control for signalized intersections with connected automated vehicles


    Weitere Titelangaben:

    TRANSPORT REVIEWS
    K. ZHANG ET AL.


    Beteiligte:
    Zhang, Kaiwen (Autor:in) / Cui, Zhiyong (Autor:in) / Ma, Wanjing (Autor:in)

    Erschienen in:

    Transport Reviews ; 44 , 6 ; 1187-1208


    Erscheinungsdatum :

    01.11.2024


    Format / Umfang :

    22 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch