Previous studies have concluded that the use of artificial neural networks (ANNs) is a promising new technique for modelling freight distribution, supporting the findings of other studies in the area of spatial interaction modelling. However, the forecasting performance of ANNs is still under investigation. This study tests the predictive performance of the ANN Model with respect to a Box–Cox spatial interaction model. It is concluded that the Box–Cox model outperforms ANN in forecasting interregional commodity flows even if ANN had proven calibration superiority in comparison to conventional gravity type models.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Forecasting interregional commodity flows using artificial neural networks: an evaluation


    Beteiligte:

    Erschienen in:

    Erscheinungsdatum :

    01.12.2004




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Unbekannt







    Accessibility improvement and interregional trade flows

    Rokicki, Bartlomiej / Vázquez, Esteban Fernández / Goliszek, Sławomir | Springer Verlag | 2024

    Freier Zugriff

    Correction: Accessibility improvement and interregional trade flows

    Rokicki, Bartlomiej / Vázquez, Esteban Fernández / Goliszek, Sławomir | Springer Verlag | 2024

    Freier Zugriff