Detecting and monitoring structural damage is crucial to prevent significant damage to ship structures caused by corrosion. This study aims to measure the performance of corrosion detection using Convolutional Neural Networks (CNN) by comparing YOLOv8 and Detectron2 models analyzed at various data augmentation settings. The results show that Detectron2 with the ResNet101 backbone performs better than Detectron2 ResNet50 and YOLOv8 models. The result found that applied augmentation data settings, such as vertical & horizontal flip, rotation, and increasing & decreasing colour saturation, highlight their importance in training robust corrosion detection models. These findings contribute to developing corrosion detection methods, showing that the Detectron2 model with instance segmentation can overcome the complexity and variety of corrosion shapes more effectively than YOLOv8 model. The instance segmentation model has proven to be the more effective CNN model for detecting abstract objects, such as corrosion damage in ship hulls.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Artificial intelligence-based ship hull plate corrosion monitoring using Convolutional Neural Network (CNN): comparison of YOLOv8 and Detectron2 architecture models


    Weitere Titelangaben:

    SHIP TECHNOLOGY RESEARCH
    T. TUSWAN ET AL.


    Beteiligte:
    Tuswan, Tuswan (Autor:in) / Veda, Kadek Arya Bisma (Autor:in) / Chrismianto, Deddy (Autor:in) / Mursid, Ocid (Autor:in) / Adam, Safri (Autor:in) / Prabowo, Aditya Rio (Autor:in) / Nubli, Haris (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    04.05.2025


    Format / Umfang :

    11 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Traffic Rule Violation Detection using Detectron2 and Yolov7

    Choudhari, Rutvik / Goel, Shubham / Patel, Yash et al. | IEEE | 2023


    Hull profile design method based on convolutional neural network

    LIU XIYANG / FENG JUN / SUN WENYU et al. | Europäisches Patentamt | 2020

    Freier Zugriff

    Protection of ship Hull against corrosion

    Voskressensky, I.N. | Engineering Index Backfile | 1937


    SHIP HULL STRENGTH MONITORING SYSTEM

    PARK TAE YOON / KIM YONG SUNG | Europäisches Patentamt | 2015

    Freier Zugriff

    Ship target detection based on CBAM-YOLOv8

    Zhang, Jiandong | SPIE | 2024