Accurate short-term passenger demand origin-destination (OD) matrix prediction contributes to the coordination of traffic supply and demand. This study proposes a novel generative adversarial network (GAN) named Conditional Wasserstein Generative Adversarial Network with Gradient Penalty (CWGAN-GP) to predict the network-wide ride-sourcing passenger demand OD matrix. The proposed CWGAN-GP model can not only capture internal spatiotemporal features of OD matrices, but also characterise external dependencies of OD matrices on conditional information, such as the traffic zone-based average traffic speeds, the traffic zone area, and time variables. Based on the ride-sourcing GPS trajectories from Didi Chuxing, Chengdu, China, and ride-sourcing data from the New York City, numerical results illustrate that the predicted OD matrices are in good agreement with the actual ones, and CWGAN-GP has good convergence performance by analysing the discriminator loss and the Wasserstein distance with respect to training epochs. Comparison results also validate the outperformance of CWGAN-GP compared with the other counterpart prediction methods and the reasonability of specific structures of CWGAN-GP. Thus, CWGAN-GP is concluded to be promising to predict network-wide ride-sourcing passenger demand OD matrices.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Network-wide ride-sourcing passenger demand origin-destination matrix prediction with a generative adversarial network


    Weitere Titelangaben:

    TRANSPORTMETRICA A: TRANSPORT SCIENCE
    C. LI ET AL.


    Beteiligte:
    Li, Changlin (Autor:in) / Zheng, Liang (Autor:in) / Jia, Ning (Autor:in)


    Erscheinungsdatum :

    02.01.2024


    Format / Umfang :

    28 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Contextualized Spatial-Temporal Network for Taxi Origin-Destination Demand Prediction

    Liu, Lingbo / Qiu, Zhilin / Li, Guanbin et al. | ArXiv | 2019

    Freier Zugriff

    Contextualized Spatial–Temporal Network for Taxi Origin-Destination Demand Prediction

    Liu, Lingbo / Qiu, Zhilin / Li, Guanbin et al. | IEEE | 2019


    Non-Symmetric Spatial-Temporal Network for Bus Origin–Destination Demand Prediction

    Wang, Liqin / Dong, Yongfeng / Wang, Yizheng et al. | Transportation Research Record | 2021


    Estimation of Origin-Destination Demand Matrix for the Urban Multimodal Traffic Network

    Wang, Ya Nan ;Si, Bing Feng | Trans Tech Publications | 2014