This study presents a comprehensive framework for estimating passengers' transfer times and extracting their distribution and related transfer routes using WIFI probe data. The departure time of preceding station, arrival time of subsequent station, and train running time are selected to obtain transfer times. Then, the collected data is analyzed using kernel density estimation to obtain candidate distribution. Gaussian mixture models are adopted to extract the distribution of each possible transfer route at both peak hours and off-peak hours. This method is tested at two transfer stations of Xi’an metro system with the comparison of results from automatic fare collection data and manual sampling survey data. The results indicate that the proposed approach can collect the transfer time with a sampling ratio greater than 30% and a deviation less than 5%. The route choice behaviors and distribution of transfer time under various conditions can be identified using the proposed methods.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Detection and analysis of transfer time in urban rail transit system using WIFI data


    Beteiligte:
    Yan, Li (Autor:in) / Si-Rui, Nan (Autor:in) / Yue, Guo (Autor:in) / Cai-Hua, Zhu (Autor:in) / Duo, Li (Autor:in)

    Erschienen in:

    Transportation Letters ; 15 , 7 ; 634-644


    Erscheinungsdatum :

    09.08.2023


    Format / Umfang :

    11 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Unbekannt





    Rail detection system for urban rail transit

    WEN XIN | Europäisches Patentamt | 2023

    Freier Zugriff

    Analysis of Urban Rail Transit Seamless Transfer Standard

    Liu Li Fen / Wang Wen | DOAJ | 2016

    Freier Zugriff

    Urban rail transit

    TIBKAT | 1.2015 -

    Freier Zugriff

    Urban rail transit

    GWLB - Gottfried Wilhelm Leibniz Bibliothek | 1.2015 -

    Freier Zugriff

    Urban rail transit fault detection device

    TANG JIANJUN | Europäisches Patentamt | 2021

    Freier Zugriff