Vehicle dynamics control (VDC) systems require information about system variables, which cannot be directly measured, e.g. the wheel slip or the vehicle side-slip angle. This paper presents a new concept for the vehicle state estimation under the assumption that the vehicle is equipped with the standard VDC sensors. It is proposed to utilise an unscented Kalman filter for estimation purposes, since it is based on a numerically efficient nonlinear stochastic estimation technique. A planar two-track model is combined with the empiric Magic Formula in order to describe the vehicle and tyre behaviour. Moreover, an advanced vertical tyre load calculation method is developed that additionally considers the vertical tyre stiffness and increases the estimation accuracy. Experimental tests show good accuracy and robustness of the designed vehicle state estimation concept.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Unscented Kalman filter for vehicle state estimation


    Beteiligte:
    Antonov, S. (Autor:in) / Fehn, A. (Autor:in) / Kugi, A. (Autor:in)

    Erschienen in:

    Vehicle System Dynamics ; 49 , 9 ; 1497-1520


    Erscheinungsdatum :

    01.09.2011




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Unbekannt




    Unscented Kalman filter for vehicle state estimation

    Antonov, S. | Online Contents | 2011


    Unscented Kalman filter for vehicle state estimation

    Antonov,S. / Fehn,A. / Kugi,A. et al. | Kraftfahrwesen | 2011


    Vehicle State Information Estimation with the Unscented Kalman Filter

    Ren, Hongbin / Chen, Sizhong / Liu, Gang et al. | Tema Archiv | 2014


    Unscented Kalman filter for state and parameter estimation in vehicle dynamics

    Wielitzka, Mark / Dagen, Matthias / Ortmaier, Tobias | BASE | 2015

    Freier Zugriff

    Research on vehicle state estimation based on dual unscented Kalman filter

    Fei, Mingzhe / Wang, Jian / Yang, Jun et al. | SPIE | 2023