Considering the unobserved spatial heterogeneity, this study aims to build a Bayesian spatial multinomial logistic (BSMNL) model by utilizing the geographic information from historical maritime accidents. The proposed BSMNL model can be applied to investigate the determinants of human errors involved in maritime accidents. Compared to the traditional multinomial logistic (MNL) model, the proposed BSMNL model produces a more accurate estimate of the effects of environmental and accident factors on the occurrence likelihood of human errors in maritime accidents. Results show that accidents involving cargo and container ships; tankers carrying liquefied natural gas (LNG), liquefied petroleum gas (LPG), or oil; and fishing vessels are more likely to be associated with human errors. Further, one important finding is that the involvement of fishing vessels significantly increases the occurrence probability of both negligence errors and judgment or operational errors. In addition, the occurrence likelihood of human errors is generally higher in springtime, conditions of poor visibility, the absence of strong winds or waves, and the moored or docked status.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Analysis of human errors in maritime accidents: A Bayesian spatial multinomial logistic model


    Weitere Titelangaben:

    T. Sheng et al.
    Journal of Transportation Safety & Security


    Beteiligte:
    Sheng, Tianyi (Autor:in) / Weng, Jinxian (Autor:in) / Shi, Kun (Autor:in) / Han, Bing (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    02.06.2024


    Format / Umfang :

    17 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Human Activity Recognition Using Multinomial Logistic Regression

    Madarshahian, Ramin / Caicedo, Juan M. | British Library Conference Proceedings | 2015


    Maritime accidents analysis using maritime human factors and analysis model

    Eslam A. Youssef / Sameh F. El Sayed / Said Abdelkader | DOAJ | 2023

    Freier Zugriff

    Urban Noise Analysis Using Multinomial Logistic Regression

    Geraghty, Dermot / O Mahony, Margaret | British Library Online Contents | 2016



    Urban Noise Analysis Using Multinomial Logistic Regression

    O’Mahony, Margaret | Online Contents | 2016