The authors' system uses a camera that acquires registered images in six spectral bands and a supervised-learning algorithm to detect metal and plastic land mines. Results show that even with a small sample size, the detection performance is good and holds promise for future work with larger data sets.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Multispectral image feature selection for land mine detection


    Beteiligte:
    Clark, G.A. (Autor:in) / Sengupta, S.K. (Autor:in) / Aimonetti, W.D. (Autor:in) / Roeske, F. (Autor:in) / Donetti, J.G. (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    2000


    Format / Umfang :

    8 Seiten, 16 Quellen




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Print


    Sprache :

    Englisch




    Multispectral pedestrian detection based on feature complementation and enhancement

    Nie, Linzhen / Lu, Meihe / He, Zhiwei et al. | Wiley | 2024

    Freier Zugriff

    Wavelength band selection method for multispectral target detection

    Karlholm, J. / Renhorn, I. | Tema Archiv | 2002


    Multispectral pedestrian detection based on feature complementation and enhancement

    Linzhen Nie / Meihe Lu / Zhiwei He et al. | DOAJ | 2024

    Freier Zugriff

    Background adaptive multispectral band selection

    Crosby, F.J. / Holloway, J.H. jun. / Holmes, V.T. et al. | Tema Archiv | 2001


    Fuzzy clustering for land mine detection

    Frigui, H. / Gader, P. / Keller, J. | Tema Archiv | 1998