Gerade in den letzten Jahren sind Motoren ständig aufwendiger und komplexer geworden. Diese Entwicklung führt zu immer neuen Steuergeräten mit einer stark steigenden Anzahl von Kennfeldern. Gleichzeitig werden die an einen Motor gestellten Anforderungen immer stärker: minimaler Verbrauch bei gleichzeitiger Einhaltung der gesetzlichen Abgasnormen, Reduzierung der teuren Prüfstandszeiten usw. Dem trägt der Einsatz modellgestützter Optimierungswerkzeuge Rechnung. Bei Kratzer Automation AG wurde ein solches System entwickelt, der PAoptimizer. Bei der Arbeit mit dem PAoptimizer hat sich gezeigt, dass evolutionäre Algorithmen gut für die Aufgabenstellung der Kennfeldoptimierung geeignet sind. Mit ihnen lassen sich die komplexen Probleme schnell lösen. Die vielfältigen Möglichkeiten im PAoptimizer, Parameter und Operatoren (wie Reproduktion, Mutation, Fitness) zu definieren, bieten dem Anwender die Chance, eigene Strategien zu entwickeln, gleichzeitig liefern aber auch vordefinierte Algorithmen bereits robuste Lösungen.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Modellgestützte Kennfeldoptimierung mit evolutionären Algorithmen


    Beteiligte:
    Furch, D. (Autor:in)


    Erscheinungsdatum :

    2002


    Format / Umfang :

    11 Seiten, 12 Bilder, 3 Quellen




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Deutsch




    Modellgestutzte Kennfeldoptimierung mit evolutionaren Algorithmen

    Furch, D. / VDI/VDE-Gesellschaft Mess und Automatisierungstechnik | British Library Conference Proceedings | 2002


    Optimierte Güterverkehrsplanung mit Evolutionären Algorithmen

    Weise, Thomas / Podlich, Alexander / Menze, Manfred et al. | Tema Archiv | 2009


    Manöverbasiertes Testen in Kombination mit evolutionären Algorithmen

    Sattler, Kathrin / Diedrich, Christian / Brandmeier, Thomas | Tema Archiv | 2015