Pipeline transportation expense is predicted using the method of artificial neural network for the first time, Three-layer BP neural network model with 1-7-1 structure is set up. Input-layer's node is pipeline transportation flux, output-layer's node is pipeline transportation expense. The 25 study samples' training is completed by using the improved BP algorithm. Then the 6 samples are tested using trained network model, the error of predictive value range is within 4%. It completely satisfies engineering practical need. The model needs fewer parameters and can predict facultative transportation flux's pipeline transportation expense. Thereby it provides decision-making's gist for energy resource manage department making energy resource dissipative ration and planning finance department predictive cost.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Pipeline transportation expense predicting based artificial neural network


    Beteiligte:
    Wu, Zhi-Min (Autor:in) / Zhou, Shi-Dong (Autor:in) / Li, Shu-Chen (Autor:in)


    Erscheinungsdatum :

    2003


    Format / Umfang :

    4 Seiten, 4 Quellen



    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Minimising network management expense

    British Library Online Contents | 2004




    MANUFACTURING EXPENSE CONTROLS

    LYNAS, R. M. | SAE Technical Papers | 1960


    Pipeline transportation device

    JING LIANWEI / LI XIAOQING / MA YONGJU et al. | Europäisches Patentamt | 2024

    Freier Zugriff