Next generation autonomous underwater vehicles (AUVs) will be required to robustly identify underwater targets for tasks such as inspection, localisation and docking. Given their often unstructured operating environments, vision offers enormous potential in underwater navigation over more traditional methods, however, reliable target segmentation often plagues these systems. This paper addresses robust vision-based target recognition by presenting a novel scale and rotationally invariant target design and recognition routine based on self-similar landmarks (SSL) that enables robust target pose estimation with respect to a single camera. These algorithms are applied to an AUV with controllers developed for vision-based docking with the target. Experimental results show that system performs exceptionally on limited processing power and demonstrates how the combined vision and controller systems enables robust target identification and docking in a variety of operating conditions.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Robust vision-based underwater target identification and homing using self-similar landmarks


    Weitere Titelangaben:

    Auf maschinelles Sehen gestützte Unterwasser-Zielidentifikation und Andocken mit Hilfe selbstähnlicher Orientierungshilfen


    Beteiligte:


    Erscheinungsdatum :

    2008


    Format / Umfang :

    10 Seiten, 6 Bilder, 9 Quellen





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Robust vision-based underwater homing using self-similar landmarks

    Negre, A. / Pradalier, C. / Dunbabin, M. | British Library Online Contents | 2008


    Recognition of Familiar Visual Landmarks in Homing Pigeons

    Braithwaite, V.A. | Online Contents | 1993


    Real-time recognition of self-similar landmarks

    Scharstein, D. / Briggs, A. J. | British Library Online Contents | 2001



    Vision-Based State Estimation Using Tracked Landmarks

    Myhre, Nicodemus / Chavez Armijos, Andres S. / Clark, Matthew et al. | AIAA | 2018